
2d//Apb2; B2 = 2s//APb3~ Sen = T0[2(b -- a)/nW] n/m, St. Venant number~ Re = pW2[2(b -- a)/ 
~w]n/m, Reynolds number; Ro = W/~oa, Rossby number. 

LITERATURE CITED 

i. R. S. Rivlin, "Solution of some problems in the exact theory of viscoelasticity," J. 
Rational Mech. Anal., No. i, 179-188 (1956). 

2. G.V. Vinogradov, A. A. Mamakov, and N. V. Tyabin, "Flow of anomalously viscous bodies 
under conditions of a state of complex stress," Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 
Mekh. Mashinostr., No. 2, 65-69 (1960). 

3. B.D. Coleman, H. Markovitz, and W. Noll, Viscosimetric Flows of Non-Newtonian. Theory 
and Experiment, New York (1966). 

4. A.N. Prokunin, M. L. Fridman, and G. V~ Vinogradov, "Helical flow of polymeric media, ~' 
Mekh. Polim., No. 3, 497-505 (1971). 

5. V.P. Myasnikov, "In complex shear," Prikl. Mekh. Tekh. Fiz., No. 5, 76-87 (1961). 
6. U.A. Bukhman, V. I. Lipatov, A. I. Litvinov, B. I. Mitelman, and Z. P. Shulman, "Rheo- 

dynamics of nonlinear viscoplastic media," J. Non-Newtonian Fluid Mech., iO, 215-233 
(1982). 

UNSTEADY TWO-DIMENSIONAL FLOW OF A COMPRESSIBLE 

NON-NEWTONIAN FLUID IN A LONG ANNULAR CHANNEL 

CAUSED BY THE MOTION OF AN INSIDE PIPE 

S. D. Tseitlin and M. S. Tarshish UDC 532.542:532.135 

We solve the unsteady, two-dimensional problem of the hydrodynamics of a compres- 
sible non-Newtonian fluid connected with the study of the flow in an annular chan- 
nel caused by the motion of an inside pipe. 

One of the complex operations in drilling is the lowering and raising of the column of 
drill pipes, which must be done regularly to replace the drill bit when it becomes dull. We 
note that in deep and superdeep drilling, the lowering and raising operations take up a 
large fraction of the total time and consist of the periodically repeated lowering (raising) 
of the column of drill pipes by a length of one drill-pipe stand (about 12-36 m). After 
this, the following stand is attached (disconnected), and the next lowering (raising) is 
carried out. These operations lead to the formation, in the drilling mud, of strong, 
periodically repeated disturbances, in the channel of the borehole, which, after propagating 
along the channel, and being reflected from its ends, superimposed, and damped, produce dyna- 
mic loads on the walls of the well, which often lead to different complications during dril- 
ling. Analogous effects arise during lowering of the column of the casings. 

A number of theoretical studies devoted to this question are known [i, 2]. However, 
because of the complexity of the problem being considered, these studies completely or par- 
tially neglect such important factors as the unsteadiness of the phenomenon, the compressi- 
bility of the fluid, the non-Newtonian properties of the fluid, and the two-dimensionality 
of the flow picture. 

We attempt to eliminate the indicated shortcomings. 

We consider the following problem. We have a long vertical pipe of length L, radius 
R2 with a closed end (Fig. i), filled with a non-Newtonian compressible fluid with specific 
density p, having known rheology. Inside the pipe there is lowered another pipe, coaxial 
with it, having length LI < L, radius RI with an end that is closed by means of a valve, 
through which we can pump a fluid in a single direction with volume flow rate q1(t). The 
upper end of the annular pipe is open and communicates with the atmosphere. 
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Fig. i. General view of the geometry of the channel. 

Fig. 2. Variation with respect to time t (sec) of the 
hydrodynamic pressure component AP (MPa) in the lower 
section of the channel during motion of a column of 
inside pipes: i) experimental curve; 2) calculated 
curve; 3) form of motion of inside pipe. v, m/sec. 

At time t > O, there begins the displacement of the inside column of pipes, consisting 
of three stages, during which the column accelerates, moves with constant velocity, and 
slows down to zero: 

[ VTo(t/tl) k' ~r - 0</<% 

!V,o ~r ti~t<ti+% (i) 

v~ (t) = I  v~0 (1 - -  [(t - -  t i  - -  ~)/t3] k') br *l + *2 < t < *i + *2 + "2, 

[ o 

where O<{kl, k 2 } <  10. 

Relationship (i) enables us to give a good approximation of the actual tachograms of 
the motion of the column of pipes, and subsequently to analyze the effect of the parameters 
YI, m2, r3, VTo, kl, and k2 on the value of the hydrodynamic loads in the channel arising 
during its motion. 

With motion of the inside pipe the fluid in the intertubular space in section (a--a) is 
displaced (Fig. i) with volume flow rate q2(t) 2 �9 = ~R1vT(t). Because of the tangential fric- 
tion of the wall of the inside pipe, a certain amount of viscous fluid is dragged along. 
Because the lower end of the outside pipe is closed, this flow of fluid is forced back into 
the intertubular space. Thus, the total volume flow rate through section (a--a) equals 

q (t) = q~ (t) + q2 (t). (2)  

We assume that the fluid included between the closed end of the outside pipe and the 
section (a--a) is incompressible, and we neglect the effects connected with the motion of a 
fluid around the end face of the inside pipe with consideration of the flow in the inter- 
tubular space formed by the surfaces of the outside and inside pipes, the section (a--a), 
and the free surface of the fluid (b--b). We also neglect effects connected with the bulk 
viscosity andelasticity of the fluid, assuming that the characteristic frequencies of the 
disturbances and relaxations allow this. 
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Fig. 3. Distribution of velocity v (m/ 
sec): a) along channel at r = RI + R2/2, 
v = v(z, r = RI + R2/2) at various times; 
b) form of velocity profiles at various 
channel sections (v = v(r)) for various 
times: i) t = 0.8 sec; 2) 1.2; 3) 2.0; 
4) 3.2; 5) 6.0 sec. z, m. 

An expression for the most completely described unsteady motion of a compressible non- 
Newtonian fluid in the region being considered is the generalized Navier--Stokes equation 
[3, 4]: 

P + p v . A v = - = - v P - t - p g ~ - N ( S )  tAv-i---~-graddivv ~-2D-.gradn(S)--  grad N (S) .d iv  v , (3)  

1 
w h e r e  D = - ~ ( V v ~ - V ~  ) i s  t h e  t e n s o r  o f  t h e  r a t e  o f  s t r a i n i n g ,  and  S = 2 t r ( D  2) i s  t w i c e  

t h e  s e c o n d  p r i n c i p a l  i n v a r i a n t  o f  t h i s  t e n s o r .  

As a r h e o l o g i c a l  m o d e l  o f  t h e  f l u i d  we t a k e  a p o w e r  l a w  [ 4 ] :  

(S) kS(n-l)~ 2. (4)  

To c o m p l e t e  t h e  s y s t e m  ( 3 ) ,  ( 4 ) ,  we u s e  t h e  e q u a t i o n  o f  c o n t i n u i t y  o v e r  t h e  s e c t i o n  [ 5 ] :  

O P __ PC ~ div u, (5)  
at 

R~ 
w h e r e  u = 2  S vrdr/(R~--R~),  i . e . ,  f o r  s o l u t i o n  o f  t h e  p r o b l e m  we make t h e  a s s u m p t i o n s  t h a t  

R~ 

the pressure P is independent of the radius r, and the fluid is compressible only along the 
channel, but the fluid situated below the section (a--a) (length L--LI) is incompressible. 
Such an approximation sufficiently well describes the actual picture of the flow for L >> 
(R2--Rz) and L >> (L--L~). 

We choose a cylindrical coordinate system (z, % r), the z axis of which coincides with 
the axis of the channel, and the origin of the coordinates is located in the lower face of 
the inside pipe (Fig. i) o Taking into account that the velocity of the fluid in the annular 
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Fig. 4. Variation of hydrodynamic component 
of pressure Ap (MPa) with respect to time t 
(sec): i) with variation of velocity of 
inside pipe according to the law represented 
by curve 5, 2) with variation of velocity of 
inside pipe according to curve 6, 3) with 
variation of velocity of inside tube corres- 
ponding to curve 7, 4) with fourfold increase 
of the parameter k from the power-law rheo- 
logical model and law of variation of the 
velocity of the inside pipe corresponding to 
curve 5. 

channel in our formulation has only a z-component v z = v(r, z), we write Eqs. (3)-(5) in the 
chosen coordinate system [3]: 

= ( 4 0~V 02V 1 OV ) 4 0 V  Oq OV &l Ov Ov aP + n - -  + -  + -  - -  # g  -4 + - -  , ( 6 )  
p ~ + pv Oz - -  0--7 3 Oz 2. Or ~. r Or 3 Oz Oz Or Oz 

O---7-=--c~P-~z ' n-k -~r 2 k, Oz J J ' 

R2 

2 ~ vrdr 
( P--PO ~ 

P=Po  1 q:- ~2 ~2 t<2 tfl 

We assume that the channel is isothermal, and the flow is everywhere laminar. We assume the 
criterion for transition to turbulent flow to be the condition Re' = p(D= -- D~)nu2-n/k-8n-1> 
2100 [4], which shows that for real quantities, used in practice, the flow is mostly laminar 
in the annular channel. 

As initial conditions we take the distribution of pressure and velocity that corres- 
ponds to hydrostatic conditions when there is no flow through the lower end of the inside 
pipe or steady flow with flow rate q1(t) in the opposite case. As the boundary condition in 
the upper section of the pipe we take the condition of the free surface P = Patm, for which 
from the equation of continuity we find 

ov I (7) az ~=L~= O. 

In the lower section of the pipe (a--a) we are given the value of the mean velocity, 
obtainable from (2): 

q(t) (8) 
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On the surfaces of the inside and outside pipes, the following adhesion condition is 
satisfied: 

v ( r  = R t )  - -  v~(t); v ( r  = R~) = 0. (9) 

The b o u n d a r y - v a l u e  p r o b l e m  ( 6 ) ,  ( 7 ) ,  ( 8 ) ,  ( 9 ) ,  f o r m u l a t e d  i n  t h i s  way ,  was s o l v e d  n u m e r i -  
c a l l y  by  t h e  me thod  o f  f r a c t i o n a l  i n t e r v a l s .  The a l g o r i t h m  f o r  t h e  s o l u t i o n  was d i s c u s s e d  
s u f f i c i e n t l y  t h o r o u g h l y  i n  [ 3 ] .  

A n u m e r i c a l  e x p e r i m e n t  was c a r r i e d  o u t  on t h e  c o n s t r u c t e d  m o d e l .  

I n  F i g .  2 we compare  t h e  e x p e r i m e n t a l l y  o b t a i n e d  t i m e  d e p e n d e n c e  o f  t h e  p r e s s u r e  v a r i a -  
t i o n  i n  t h e  s e c t i o n  z = L~ i n  t h e  i n t e r t u b u l a r  s p a c e  of  t h e  w e l l  d u r i n g  l o w e r i n g  to  140 mm 
of  d r i l l  p i p e s  o f  l e n g t h  1100 m, p r e s e n t e d  i n  [ 6 ] ,  w i t h  t h e  c a l c u l a t e d  c u r v e  o b t a i n e d  f rom 
a s o l u t i o n  o f  t h e  p r o b l e m  c o n s i d e r e d  a b o v e .  

The p a r a m e t e r s  o f  t h e  f l u i d ,  g i v e n  i n  [ 6 ] ,  a r e :  p = 1440 kg /m 3, To = 11 Pa ,  n = 0 . 0 2 8  
P a . s e c  ( t h e  B ingham mode l  o f  t h e  f l u i d  was a p p r o x i m a t e l y  t h e  same as  t h e  a p p r o p r i a t e  power  
mode l  ) . The r a d i i  o f  t h e  i n s i d e  and  o u t s i d e  p i p e s  were  Rz = 0 . 0 7  m; R2 = 0 . 1 4 6  m. The 
c o l u m n  o f  i n s i d e  p i p e s  was a c c e l e r a t e d  f o r  z l  = 2 . 5  s e e  up to  a v e l o c i t y  o f  5 . 5  m / s e e ,  
t h r o u g h  T2 = 4 . 8  s e c  t h e r e  was d a m p i n g  f o r  a t i m e  T3 = 2 . 5  s e e .  

As c a n  be  s e e n  f rom F i g .  2,  t h e  c a l c u l a t i o n s  b a s e d  on t h e  a s s u m e d  mode l  g i v e  good a g r e e -  
men t  w i t h  e x p e r i m e n t  o v e r  t h e  e n t i r e  r a n g e  o f  t i m e s  b e i n g  c o n s i d e r e d ,  w h i c h  i n d i c a t e s  t h a t  
t h e  s e l e c t e d  mode l  i s  a d e q u a t e  and  t h e  r e s u l t i n g  e f f e c t  i s  p r a c t i c a l .  

I n  F i g .  3 we p r e s e n t  t h r e e - d i m e n s i o n a l  d i s t r i b u t i o n s  of  t h e  v e l o c i t i e s  i n  t h e  c h a n n e l ,  
o b t a i n e d  f o r  s o l u t i o n  o f  one  o f  t h e  v a r i a n t s  b e i n g  c o n s i d e r e d  (p = 1650 kg/m 3, k = 1 1 . 2 ;  n = 
0 . 3 6 ,  c u r v e  5 i n  F i g .  4 c o r r e s p o n d s  t o  t h e  c h o s e n  fo rm o f  m o t i o n  o f  t h e  p i p e )  f o r  v a r i o u s  
moments  o f  t i m e  and  c o o r d i n a t e s .  As f o l l o w s  f rom F i g .  3b ,  t h e  p r o f i l e  o f  t h e  f l o w  i n  t h e  
c h a n n e l  a l w a y s  c o n s i s t s  o f  two o p p o s i t e l y  d i r e c t e d  f l o w s "  a f l u i d  d r a g g e d  by  t a n g e n t i a l  f r i c -  
t i o n  i n  t h e  d i r e c t i o n  o f  m o t i o n  o f  t h e  i n s i d e  p i p e  and  a f l u i d  m o v i n g  i n  t h e  o p p o s i t e  d i r e c -  
t i o n .  

The velocity profiles in different sections (for z = const) differ from one another, 
since at all stages of the motion of the pipe, we have not succeeded in establishing proces- 
ses for tracking the vibrational nature of the velocity variation over z. In the given fig- 
ure we can observe a complicated picture of the interaction, including damping and reflec- 

tion of the generated waves (Fig. 3a). 

As follows fro m the solutions obtained, it is impossible to carry out estimates of the 
inertial forces, but this has been done in [i, 2]. Actually, the values of the velocities 

and accelerations differ at different points of the channel, whereas under the assumption of 
incompressibility of the fluid we come to an incorrect conclusion that the velocities at all 
sections of the channel at a given time should be the same. The estimates obtained in this 
way can be several times too large in comparison with the actual situation. 

We finally note that the point of the profile at which the velocity v = 0 also oscil- 
lates according to the establishment of the flow in the channel. As was shown by calcula- 
tions, this point has a tendency to shift to the right with increasing fluid viscosity and 
with approach to the outlet section of the pipe. 

We consider one of the characteristic dimensions of the lowering of a pipe column of 
length LI = i000 m, radius RI = 0.071 m in a well of radius R2 = 0.114 m, filled with dril- 
ling mud of density 0 = 1650 kg/m 3 and rheology with parameters of the power-law model k = 
2.8; n = 0.36. The flow rate through the inside pipe was assumed to be equal to ql = 0.0005 

3 
m /sec. The pipe column was accelerated according to the law (i) with various parameters. 
We set ourselves the problem of analyzing and drawing qualitative conclusions about the 
effect of various parameters of the fluid, geometry of the channel, and form of the motion 
of the inside pipe on the value of the hydrodynamic overloads arising at the walls of the 
channel for such motion. 

In Fig. 4 we present the change in pressure below (near the section a--a) the channel 
(curves 1-4) as a function of the viscosity of the fluid and the nature of the motion of the 
column (curves 5-7). Here we consider cases when in expression (i) we have TI = T3 = 2 sec; 
VTo = --2.5 m/sec; T2 = 2.8 sec; k2 = i~ k~ = 0.25; i; 4 (curves 6, 5, and 7 of Fig. 4). We 
note certain general relations obtained from the solution of the problems given in Figs. 3 
and 4. 
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i. The picture of the pressure variation at any point of the channel has an oscilla- 
tional character, with the period of the oscillations being equal to the total phase of the 
hydraulic shock. 

2. The maximum value of the dynamic overload corresponds to the first maximum and 
occurs after completion of the acceleration stage of the pipe. 

3. The value of this maximum depends strongly on the value of the velocity VTo , the 
rheology and density, and the geometry of the channel (L~, RI, R~), and it depends weakly on 
the acceleration of the pipe and its nature (kl). 

4. The oscillational damping time in the channel depends on the rheology of the fluid 
and occurs only for a certain time after the pipe has completely stopped. 

5. Owing to reflections from the free surface and the arrival below the channel of 
unloading waves it is possible to have negative values of hydrodynamic loads, i.e., the pres- 
sure at any point of the channel can become less than the hydrostatic pressure (the first 
minimum on the curves 1-3). This phenomenon is confirmed by a complete series of experimen- 
tal studies, e.g. [6]. 

6. The nature of the motion of the pipe on the first stage (kl) affects the nature of 
the pressure increase in the channel and is always similar to it. In this case it affects 
not only the form of the leading edge of the pressure increase but also on the whole nature 
of its variation and, in particular, it leads to a certain phase shift of the curve (see 
Fig. 4, curves 1-3). 

7. Deceleration of the inside column of pipes on the third stage of motion superimposes 
a new perturbation on the flow, which is still unsteady; as a rule, it leads to the appear- 
ance of negative overloads of pressure on the walls of the channel. Here, their value can 
reach several tens of atmospheres, and it depends not only on r~, VTo, and k2, but also on 
the moment at which deceleration begins with respect to the phase of the oscillations at a 
given point of the channel, caused by the first stage of motion of the inside pipe. Thus, 
if at a given moment, there is an increase in pressure at a definite point in the channel, 
then the deceleration of the inside pipe that has begun weakens it, and the negative value 
of the hydrodynamic overload will be a minimum (see Fig. 4, curve 3). If the moment of 
deceleration coincides with the decrease of the pressure wave, there will be a resonant 
amplification, and the value of the negative overload becomes a maximum (see Fig. 4, curve 
2). 

8. Thus, by selecting appropriate parameters for the motion of the pipe (kl, k2, TI, 
T2, T3, VTo), we can minimize the value of the hydrodynamic loads on the walls of the chan- 
nel. 
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